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Convection induced by inclined thermal and solutal 
gradients in a shallow horizontal layer of a porous 

medium 
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A theoretical examination is made of convection, induced by applied thermal and 
solutal gradients inclined to the vertical, in a shallow horizontal layer of a saturated 
porous medium. The horizontal components of these gradients induce a Hadley 
circulation, which becomes unstable when the vertical components are sufficiently 
large. A linear stability analysis is carried out, and calculations are made using a low- 
order Galerkin approximation for the various modes of instability. The orientation of 
the preferred mode and the other critical quantities are determined for representative 
parameter values. 

TX 75275-0335, USA 

1. Introduction 
A vast number of papers have been concerned with the natural convection, in a 

horizontal layer, induced by either horizontal or vertical temperature gradients, but 
very few have dealt with the more general situation of inclined temperature gradients. 
The case of convection in a viscous fluid has been treated by Weber (1973, 1978), 
Sweet, Jakeman & Hurle (1977), Bhattacharyya & Nadoor (1976) and Nadoor & 
Bhattacharyya (1981), and that of convection in a porous medium by Nield (1990, 
1991). All these reports have been of theoretical investigations; as far as we are aware 
no experimental work has been published. The problem is complex. The results to date 
suggest that the differential equation system governing the flow will have, in general, 
multiple solutions. In view of this complexity, it is worthwhile to simplify the analysis 
by considering the flow in the central section of a shallow horizontal layer, one whose 
height-to-length and height-to-breadth ratios are small, so that the effect of lateral 
walls is to confine the fluid but it is otherwise negligible. The above publications have 
dealt, in fact, with this simplified problem, which we believe to be paradigmatic for 
more complicated problems. 

In this paper the theoretical work is extended to the double-diffusive situation, where 
both thermal and solutal gradients are applied. Here we deal with convection in a 
saturated porous medium, and postpone a similar treatment of convection in a clear 
fluid. The former problem is simpler to deal with, because the differential equation 
system is of lower order. Also, comparison with future experimental work is more 
likely to be forthcoming. (It is extremely difficult to set up a uniform horizontal solutal 
gradient in a clear fluid, but there is a possibility of setting up one in a packed bed 
simultaneously with the assembly of the bed.) The double-diffusive problem treated in 
this paper is an extension (to inclined gradients) of the problem (for vertical gradients) 
which was first discussed by Nield (1968). Corrected results, together with a survey of 
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later work on double-diffusive convection in porous media, is contained in Nield & 
Bejan (1992, Chap. 9). A related paper is that of Sarkar & Phillips (1992). This deals 
with a thick layer and is concerned with the special case of zero horizontal density 
gradient and no Hadley flow. Sarkar & Phillips give references to a number of papers 
dealing with geological and environmental situations in which the thermohaline 
convection in a porous medium is applicable. 

This paper is an extension of that by Nield (1990). We have found it convenient to 
introduce a novel scaling, so that the horizontal Rayleigh numbers appear explicitly in 
the boundary conditions for the governing equations. In order to rapidly explore a vast 
parameter space, we have been content to use a low-order Galerkin approximation, the 
order of accuracy of which has been determined in the previous work (Nield 1990). 
Even so, we have had to be narrowly selective in our choice of parameters used for 
computation, and we have considered only the case of Dirichlet-type boundary 
conditions on the perturbation temperature and concentration. 

2. Basic equations 
The situation considered is that illustrated in figure 1. The Cartesian axes are chosen 

with the z*-axis vertically upwards. The superscript asterixes denote dimensional 
variables. The porous medium occupies a layer of height H. The vertical temperature 
difference across the boundaries is AT and the vertical concentration difference is AC. 
The imposed horizontal thermal and concentration gradient vectors are (PT,, PTY) and 
(Pc,, Pc,> respectively. 

We assume that the Oberbeck-Boussinesq approximation is valid, and that flow in 
the porous medium is governed by Darcy's law. Accordingly the governing equations 
are 

v*.u* = 0, (2.1) 

(2.2) 
(2.3) 
(2.4) 
(2 .5)  

0 = - v * p * -  Cu/m u* + P,*& 
(pc),(aT*/at*) +@c,)~v*  -V*T* = k m V*'T*, 

$(ac*/at*) + u* .v*c* = D m v*~c*, 
Pf* = POP - Y d T *  - T,) - YC(C * - CJI. 

Here (u*,v*,w*) = u*, P*, T* and C* are the seepage (Darcy) velocity, pressure, 
temperature and concentration, respectively. The subscripts m andfrefer to the porous 
medium and the fluid respectively. Also ,LA, p,  and c denote the viscosity, density and 
specific heat, while K and 4 are the permeability and porosity of the medium, k ,  and 
D ,  are the thermal and solutal diffusivities, and yT is the thermal expansion coefficient 
and yc the corresponding solutal quantity. (We prefer to maintain a symmetrical 
notation. Note that yc is normally a negative quantity.) 

The boundary conditions are 

W* = 0, T* = T , - - ( f A T ) - - T g ~ * - P T y ~ * ,  1 
C* = Co-~(+-AC)-Pc,x*-pc,y* at z* =kill.) 

We define non-dimensional quantities by 

a,  t* Hu* t = -  (u,u,w) = u = -, X* x = -  
H '  A H 2  ' 01, 
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T* = To - fAT - &;x* - bTyy* 

T* = To + +AT - &;Y* - pry* 
C* = Co + iAC- &,x* - y* 

FIGURE 1. Sketch showing the geometry and the boundary conditions. 

We refer to R, as the vertical thermal Rayleigh number and S, as the vertical solutal 
Rayleigh number. In terms of the Lewis number L, = tcm/Dm and the buoyancy ratio 
N = yc A C / y T  AT we have S, = NL, R,. We also introduce the horizontal thermal and 
solutal Rayleigh numbers defined by 

The governing equations now take the form 

The boundary conditions are now 

w = 0, 

T = - f(  f R,) - R, x - R , ~ ,  1 (2.1 1) 

c = - ~ ( ~ s , ) - s , ~ - s , ~  at z = &+. J 
We recognize that the scaling used for time and velocity is somewhat arbitrary in 

a double-diffusive context. It has the advantage that it puts (2.9) in its simplest form 
and groups q5 and A together in (2.10). Our novel scaling of temperature and 
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concentration had the effect of  making R, and S, appear in the boundary conditions 
rather than the differential equations, and this has the consequence that all the 
Rayleigh numbers appear in the perturbation equations via the steady-state solution 
only. 

3. Steady-state solution 
Equations (2.7)-(2.11) have a steady-state solution of the form 

w 

T,  = T(z)-R,x-R,y ,  C, = Z;(Z)-S,X-S,,V, 

us = U(z), v, = V(z), w, = 0, p, = P ( x ,  y ,  z) .  

This is a solution provided that 

DU = R,+Sx/Le, DV = R,+S,/L,, 

DT = - UR,- VR,, L ; ~ D ~ C  = - us,- vs,. 
Here D denotes the derivative operator, d/dz. 

We suppose that there is no net flow in the horizontal direction, and so 

(U> = 0, ( V )  = 0, 

where the angle brackets denote an average with respect to the vertical coordinate, 
which is equivalent to an integral with respect to z from -: to i. One then obtains the 
solution 

U = (R, + S,/L,) Z, V = (R, + S,/Le) Z, 

T = - R, z +&A,(z - 4z3), C = - S,  z + &A,(z - 4z3), 

(3.1) 

(3.2) 
% - 

where 

A, = SE + Si + Le(R, S,  + R, S,). 

The flow given by (3.1) is commonly referred to as a Hadley circulation. 
We define the thermal and solutal Rayleigh number vectors by 

(3.3) 

R = (Rz, R,, Rz), s = (SX, s,, S,). 

We note that here the Hadley circulation is in the vertical plane containing the vector 
R + S/L,.  

4. Stability analysis 
We now perturb the steady-state solution. We write 

v = v,+v', T =  T , + 0 ,  C = C,+C', P = P,+p'. 

The linearized perturbation equations are 

0 . v '  = 0, 
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Wp’ + U’ -(el + c’/L,) k = 0, 

awla t+  uae/ax+ v a $ ’ / a y y R R , u ’ - ~ , v ’ + ( ~ ~ ) w ’  = v2e, 

( # / A )  a q a t  + u a c p x  + vac‘/ay - s, U‘ - s, U’ + (DO W /  = L ; ~  v2c‘. 

[u’, u’, w’, V ,  c’,p’] = [u(z), t@), w(z), O(z), c(z),p(z)] exp{i(kx+ly-ut)). (4.5) 

We substitute this into the perturbation equations and eliminate p ,  u and v from the 
resulting equations to obtain 

(4.2) 

(4.3) 

(4.4) 

We make the normal mode expansion 

(D2 - a’) w + a28 + &/L, = 0, 

(D2 - a2 + ia- ikU- ilV) 8 + ia-’(kR, + IR,) Dw - (DF) w = 0, 

(4.6) 

(4.7) 

(Li1[D2 - a’ ]+i(# /A)a- ikU- i lV)~+ia-~(kS ,+lS , )Dw-(D~w = 0, (4.8) 

where a = (k2 + Z2)i is the overall horizontal wavenumber. We define the wavenumber 
vector by a = (k, 1,O)  and we refer to a disturbance with a perpendicular to the 
direction of the Hadley circulation as a longitudinal mode. Similarly a disturbance with 
a parallel to this plane will be called a transverse mode. For a longitudinal mode the 
flow is composed of convective rolls, with axes aligned with the Hadley circulation, 
superposed upon that circulation. For a transverse mode the roll axes are perpendicular 
to the Hadley circulation. 

The last three equations must be solved subject to appropriate boundary conditions. 
For the case of impermeable, isothermal, isosolutal boundaries we have 

w = ~ = c = O  at z = + ; ,  (4.9) 

The problem is now reduced to that of solving the equations (4.6)-(4.9) where 

DF = - R, +&A,( 1 - 12z2), DC = - S, +&A2( 1 - 122). (4.10) 

For the particular case of L, = + / A  = 1, the eigenvalue problem reduces to the same 
as for the monodiffusive case treated by Nield (1991), but with R,, R,, R, replaced by 
R, + S,, R, + S,, R, + S,, (and with 6’ replaced by 8 + c). 

In the general case, without loss of generality, we may regard R, as the eigenvalue, 
with L,, 4, A ,  R,, R,, S,, S,, S,, a, k and 1 as parameters. The critical value of R, is 
its minimum as u, k,  1 are varied (with c taking certain determined values). Clearly we 
have a very large parameter space to explore, and any short cuts, such as the 
employment of approximate methods of calculation, are welcome. 

5. Galerkin approximation 
It is convenient to employ a low-order Galerkin approximation sufficiently accurate 

for the purpose in hand. We have found, by making spot comparisons of the results 
with those from a fourth-order approximation, that a second-order approximation 
appears to give values of the critical vertical Rayleigh number accurate to within about 
1 % if A, and A, both have magnitudes less than 1000. The accuracy deteriorates rapidly 
for higher values of the magnitudes of A, and A,. The main factor determining the 
accuracy appears to be the deviation from linearity of the basic thermal and solutal 
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profiles. The second-order approximation appears to be accurate whenever the applied 
vertical thermal and solutal gradients do not change sign as the vertical coordinate 
varies within the layer. 

We select as trial functions (which satisfy the boundary conditions) 

w ~ ~ - ~  = 8,,-, - - c ~ ~ - ~  = cos (2p - 1)m, w~~ = 8,, = c Z p  = sin 2pxz 

for p = l ,2 ,  .... 

For the second-order approximation, for example, we put 

W =  A,w,+A,w, ,  8 =  B,81+B282,  C =  C , C ~ + C , C ~  

and substitute into the three equations (4.6)-(4.8). We multiply the first equation by w,, 
the second by O,, the third by c,, repeat the process with w2, O,, vz, then integrate each 
term with respect to z from z = -f to i, perform some integrations by parts utilizing 
the boundary conditions, and eliminate the constants A,, A,, B,, B,, C, and C, from 
the resulting six homogeneous linear equations. We thus obtain the eigenvalue 
equation in the form 

where, for m, n = 1, 2, 
det (At j )  = 0, (5.1) 

A3m-2,3n-2 = (Dwm Dw, +a2w, wn), 

A3m-2,3n-1 = -a2(wm en>, 

= -a2Li1<Wm cn>, - 
&-1,3n-2 = (DTO, W ,  -ia-'(kR, +IR,) Om Dw,) ,  
Aam-1,3n-l = (D0,D0,+(a2-i[v-kU-W]) 8, On), 

A3m-1,3% = 03 
w 

A3,,3,-2 = (DCc, w, -ia-'(kS,+ IS,) c, Dw,) ,  

A3m.n-1 = 09 
A,,,,, = (L;lDc,Dc, +(L;1a2-i[q5a/A-kU-IV]) c, c,). 

The various integrals involved are easily evaluated. For example, one obtains 
1 2 2  ( w ,  wn) = i s m , ,  (DWm DWn) = 5m 7~ Smn, 

where 
if m+n is even, 

if $(m+n+l) is even, 

- 1  if xm+n+l) i sodd .  
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Hence one finds that 

1L-1 2 A11 = $(n2+a2), A, ,  = -$a2, A, ,  = - 2  , A, ,  = A,, = A,, = 0, 
A,, = -~R,+A1/87c2, A,,  = g(xz+a2-ia), ,A,, = 0, 

A,, = -4ia-R/3a2, A,, = -8i{a-R+L;lu.S)/9n2, A,, = 0, 

A 31 - _ _  - + A,/8n2, A32 = 0, A,, = gL;1(n2 + a') - i$a/Aj, 

A,, = - 4ia. S/3a2, A,, = 0, A,, = 8i{a. R +Lila.  s)/97c2, 

A41 = A,, = A43 = 0, A,, = i(47c2+~'), A,, = -fa2, A 46 = -L-la2 e 2  

A,, = 4ia. R/3a2, A,, = 8i{u. R + L;la*S)/97c2, A,, = 0, 
A,, = -& + A1/32n2, 

A61 = 4ia.S/3a2, A,, = 0, A,, = 8i{a.R+L;la.S)/97c2, 

4 4  = -is, + h,/327c2, 

A,, = i(47c2 + a2 -iv), A,, = 0, 

A,, = 0, A,, = f(Li1(47c2 + a,) - i$a/Aj. 

6. Analytical estimates 
In general, it is impractical to solve (5.1) analytically, but this can be done for one 

special case. If R and S lie in the same vertical plane, then for the longitudinal modes 
one has a - R  = a - S  = 0, and the sixth-order determinant factorizes into the product 
of two third-order determinants, and the eigenvalue equation splits into two equations, 
one corresponding to an even mode (the eigenfunction being an even function of z) and 
the other to an odd mode. These modes can be then dealt with separately. The real and 
imaginary parts of the eigenvalue equation yield two equations, involving real 
quantities, to be solved simultaneously. One finds that there are two alternatives: 

(0 CT = 0 and R,+S,-(A,+A,)/47c2 = ( ~ ' + a ~ ) ~ / a ' ;  (6.1) 

or 

(ii) ($L,/A)d = (z2 +a2)' - a2[Rz + S, - (A ,  + h,)/4n2] 

($L,/A) (R , -Ah , /4~c2)+(S , -h , /4~2)  = [I +$L,/A] (n2+a2)2/a2. 

(6.2) 

(6.3) 
As a varies, the minimum value of (7c2 + a2)2/a2 is 4n2, attained when a = 7c. It follows 
that the neutral stability curve for the non-oscillatory (stationary, direct, monotonic 
are synonyms used) modes is given by 

and 

R, + S, = 4x2 + (A, + A2)/4n2, 

($Le/A) (R, - h,/47c2) + (S,  - h,/47c2) = 47c2[ 1 + $L,/A]. 

(6-4) 
and that for the oscillatory modes is given by 

(6.5) 
We recognize that these are the same as for the vertical-gradients case (cf. Nield & 
Bejan 1992, p. 278) but with R, and S, replaced by R,-A1/4n2 and S,-A,/47c2 
respectively. 

The second factor corresponds to the second lowest eigenvalue (for the vertical 
Rayleigh number), and yields the same results but with 47c2 replaced by 167~'. 
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For the case A, = A, = 0 these results are exact. For the general case they are only 
approximate, and, as we shall see below, the longitudinal modes are not always the 
favoured ones. Thus (6.4), (6.5) provide only upper bounds on the critical vertical 
Rayleigh number, for the coplanar case that we are considering. 

7. Numerical calculations 
7.1. Procedure 

We decided that it was meaningful to work in terms of polar coordinates for the 
horizontal vectors, so we also made the transformations 

} (7.1) 
k = acos Y, 1 = asin Y, 

R, = R,cos YR, R, = R, sin YR, S,  = S,cos Ys, S, = S,sin Y,. 
The real and imaginary parts of (5.1) give a pair of equations which determine (R,, a) 
as functions of the nine parameters a, Y, R,, YR, S,, Ys, S,, A / $  and L,. We were 
faced with the task of minimizing the value of R, as (a, !P) varied with the other 
parameters held constant. In the present investigation we used the fixed values 
L, = 10, A / $  = 1. (This Lewis number is roughly representative for experiments with 
a sugar/salt system. The heat capacity/porosity ratio, A / $ ,  affects only the oscillatory 
modes. The value chosen for A / $  is also appropriate for that system.) Without loss of 
generality, the direction of the x*-axis was chosen so that Y, was always zero. Thus 
all orientations are now relative to the direction of the horizontal solutal gradient. For 
Y, we selected the representative values 0", 45", 90", 135" and 180". We selected S, 
values in the range - 100 < S, < 100, and restricted the value of R ,  and S,  to those 
for which the second-order Galerkin approximation gives useful results. 

We have written two programs to compute R,. The first employed Gaussian 
elimination to calculate the determinant. This was used for the estimation of accuracy 
of the second-order approximation. The second was a special program for dealing 
efficiently with the second-order calculation only. The algorithm that was used 
capitalized on the fact that the determinant was quadratic in R, and quartic in a. 
Muthematica was employed to expand the determinant and write the resulting 
expression as a polynomial in R,, whose coefficients were polynomials in c, whose 
coefficients were powers of a'. The algebraic expressions for the roots of the R, 
quadratic equation were then put into a Fortran program and evaluated using double 
precision. For each evaluation of an R, root the values of c were sought to ensure that 
Im(R,) were zero. (We utilized the fact that Im(R,) is a fourth-degree polynomial in 
a.) For each such value of CT the wavenumber parameters a, Y were varied to give the 
minimum value of Re(R,). The least of these minima is the critical value of R,. 

The expressions for R, are periodic in Y, with period 180", and this allowed us to 
restrict the calculations to the interval 0" < Y < 180". For the case YR = 0, i.e. when 
the thermal and solutal gradients are coplanar, there is a further symmetry which 
allowed a restriction to the interval 0" 6 Y < 90". After locating the region containing 
the absolute minimum of R,, we determined the minimum using a step size that was 
typically 0.1" for Y and for a, and, for the oscillatory modes, we determined cr to 
within Hence the numerical inaccuracy is much less than the inaccuracy arising 
from the Galerkin approximation. 

7.2. Results 
We first present, in figure 2, some values of the critical thermal vertical Rayleigh 
number, R,, as a function of R, and S,, for the case S, = 0 and YR = 0" or 180" (the 
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90' \ 

0 20 40 60 80 
-80 " " " " " 

R H  
FIGURE 4. Comparison of the critical vertical Rayleigh numbers for the 
oscillatory modes, for various orientations of the horizontal thermal Rai 
S, = 10, R ,  = S,. 

oscillatory and non- 
[leich number vector. 

coplanar case). The values for a non-oscillatory mode are plotted as a continuous line 
and those for an oscillatory mode as a dashed line. Each graph shows two pairs of 
curves, each pair pertaining to a certain value of S,/R,. The four sets of values are 
0.1 (= l/Le), 1, 10 (= Le), and 100 (= L:), respectively. The corresponding values of 
Y, giving the orientation of the preferred modes, are plotted in figure 3. Because we 
consider them of lesser interest, we have not presented the corresponding values of a 
and c. (We mention that, providing R, and S,  are less than about 80, the critical value 
of a does not vary much from 3.1, the value of S,  = R, = 0. At larger values of R, 
and S ,  there can be a dramatic change in a, corresponding to a transition from an even 
mode to an odd one, as noted by Nield (1991).) 

Figure 4 presents, for the representative value S, = 10 and for R, = S,, the 
difference between the minimum R, for the oscillatory mode and that for the non- 
oscillatory mode, for five different orientations of the horizontal thermal Rayleigh 
number vector, namely for YR = 0", 45", 90", 135" and 180". Above the dashed line the 
preferred mode is non-oscillatory and below this line the preferred mode is oscillatory. 
The figure shows that the non-oscillatory mode is preferred for YR > 90" while the 
oscillatory mode is preferred for YR < 90". 

The relative influence of R, and S,  was investigated by keeping S,  = 10 and 
varying R, = 1,10, 100. The effect of varying S, was similarly investigated. The graphs 
in figure 5 ,  for YR = 0" (a) and 180" (b), show the critical R, for the non-oscillatory 
(continuous line) and oscillatory (dashed line) modes. The value of S, at the transition 
between oscillatory and non-oscillatory modes increases for both cases when R, is 
increased. (Note that the result for !PR = 180" can be deduced from that for !PR = 0" 
by formally replacing R, by -RH. )  

We now concentrate on the case R,  = S ,  = 10, values for which our second-order 
scheme gives highly accurate results, and investigate the effect of varying the 
orientation of the horizontal thermal gradient as well as S,. The results for YR = 0" and 
180" have already been depicted by the thick lines in figure 5.  The corresponding results 
for !PR = 45" and 135" are exhibited in figure 6. The chief feature is that the preferred 
mode switches from oscillatory to non-oscillatory as S, increases. 

Figure 7 shows how the orientation Y of the preferred critical mode varies with S,, 
for the five orientations of R,. A cross denotes the location of the transition point 
between the oscillatory and the non-oscillatory modes. It is noteworthy that over a 
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160 

120 

R, 80 

40 

0 

FIGURE 5. Effect of the amplitude of the horizontal thermal Rayleigh number vector on the stability 
boundaries for oscillatory modes (dashed lines) and non-oscillatory modes (continuous lines). 
S, = 10. (a) YR = Oo, (b) Y = 180". 

0 40 80 
-801 I '  " " " " " " " " " -80 -40 

FIGURE 6. Effect of the orientation of the horizontal thermal Rayleigh number vector on the transition 
from oscillatory (dashed lines) to non-oscillatory (continuous lines) modes. S,  = R, = 10. (a) 
Y = 4 5 O ,  (b) Y = 135". 
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90 0" 
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45-A0 I -bo -bo -io I I io I io I ~b sb 
sz 

FIGURE 7. Orientation of the preferred modes. Parentheses delimit regions of oblique modes. 
Crosses indicate transition from oscillatory to non-oscillatory modes. S ,  = R, = 10. 

60 . 

= 1/L, (oscillatory) 

-80 -60 -40 -20 0 20 40 t 

sz 
FIGURE 8. Overall stability boundaries for various orientations of the horizontal thermal 

Rayleigh number vector. S,  = R, = 10. 

wide range of S, one has the relation Y z YF+900, where YF, which gives the 
orientation of the basic flow, is given according to (3.1) by 

(7.2) YF = tan-' (V/  U) = tan-l [(R, + S,/L,)/(R, + Sz/Le)] .  

(For the cases presented in figure 7 it turns out that Y, z YR.) This means that the 
preferred mode is almost longitudinal to the basic flow except within the regions 
delimited by the parentheses in the figure; in these regions oblique modes are preferred. 
The amount of variation inside such a region increases with YR, from zero at 
YR = 0" to 90" at YR = 180". The dashed lines linking the transition points, denoted 
by the crosses, have been inserted solely to facilitate the perception of the curves. 

In order to obtain a global picture of the critical Rayleigh numbers, we show in 
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- non-oscillatory _/.--- 

-20 - 

-40 - 

3.14 a 
3.12 

3.10 
0 45 90 135 180 

Y R  

FIGURE 9. Data for the transition between oscillatory and non-oscillatory modes. S,  = R, = 10. 

figure 8 the overall critical R,, i.e. the smaller of the oscillatory and non-oscillatory 
values of R,, as a function of S,. We note three regimes. For large negative values of 
S, the preferred mode is oscillatory and the slope of the line has constant magnitude 
Lkl. For large positive values of S, the preferred mode is non-oscillatory and the slope 
has constant magnitude L,. For intermediate values of S,, where the curves are drawn 
thinner, the variation is not linear. Again a cross denotes the transition point between 
the oscillatory and non-oscillatory modes. 

Figure 9 presents as functions of YR, values pertaining to the transition point. Figure 
9(a) shows the values of R, and S, while figure 9(b) presents the critical wavenumber 
parameters 01 and !.P at the transition point, for each of the oscillatory and non- 
oscillatory modes. 

8. Discussion 
The gross features of figure 2, illustrating the coplanar situation, are in accord with 

our expectation. With reference to figure 1, and using thermohaline terminology, we 
always have fresh water on the left and salty water on the right, since we have made 
S, positive. If R, is also positive ( !FB = 0) then we have hot water on the left and cold 
water on the right. The steady-state density then increases from left to right and, in 
accordance with (3.1), the direction of the basic circulation is that the hotter fresher 
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water flows above cooler denser water, a stable situation. One would therefore expect 
that the effect of the horizontal gradients would be stabilizing, i.e. to increase the 
critical vertical Rayleigh number R,, and this is borne out by the results shown in figure 
2. 

On the other hand, when R, is negative (YR = 180") we have cold fresh water on the 
left and hot salty water on the right. The density gradient is in the positive (or negative) 
x-direction according as S ,  > L, R, (or S,  < L, R,), respectively. Again in 
accordance with (3. l), when S ,  < L, R, we have hotter saltier water flowing (to the 
left) over cooler fresher water. This is the unstable situation associated with fingering, 
and we expect the effect of the horizontal gradients to cause increased instability (of the 
non-oscillatory kind) Again this is borne out by our figure. The case of S,  = L, R, 
corresponds to steady-state isodensity in the horizontal direction, and no Hadley flow. 
(This is the situation studied by Sarkar & Phillips 1992.) Our results show that in this 
case the effect of the horizontal gradients is again to cause increased non-oscillatory 
instability. 

Particularly interesting is the prediction that the horizontal gradients can cause 
instability in the absence of any vertical gradients. This result is in accord with the 
study of the clear-fluid case by Thorpe, Hutt & Soulsby (1969). We confirm their 
conclusion (based on a Squire's theorem type of argument) that the preferred mode is 
transverse, and their conjecture that the preferred mode is non-oscillatory in such 
circumstances. (We offer the following physical explanation. A fluid particle displaced 
to the right finds itself in a hotter, saltier environment. Because of the large diffusivity 
of heat it warms up quickly. It is then less dense than its surroundings and so is subject 
to an upwards buoyancy force. Similarly a particle displaced to the left is subject to a 
downwards buoyancy force. The net effect is a tendency to produce vorticity in the 
negative y-direction. If this tendency is sufficiently large - and this is so when R,  is 
sufficiently large - to overcome the retarding effect of viscosity, then a Hadley 
circulation can be induced, but this in turn is unstable to cellular motion (non- 
oscillatory) because hotter saltier water is flowing above cooler fresher water.) 

Finally, when S ,  > L, R ,  we have cooler fresher water flowing (this time to the 
right) over hotter saltier water, and we expect increased instability of the oscillatory 
type. Our expectation is only partly confirmed. The oscillatory mode is indeed 
generally favoured, but the effect of the horizontal gradients is generally stabilizing. 

In the monodiffusive case it was found (Nield 1991) that the non-oscillatory 
longitudinal mode was invariably the preferred mode. (We recall that, as defined in $4, 
a longitudinal mode is characterized by k = 0 or, equivalently, Y = 90O.) From figure 
3 we see that in the double-diffusive case the preferred mode can be longitudinal, 
transverse, or oblique, depending on the parameters. 

Figure 4 indicates that generally an oscillatory mode is preferred to a non-oscillatory 
one when the horizontal thermal and solutal gradients make an acute angle with each 
other, and this is because (see figure 2) the oscillatory mode is stabilized (by the 
horizontal gradients) to a lesser extent than is the non-oscillatory mode. The non- 
oscillatory mode is preferred when the horizontal thermal and solutal gradients make 
an obtuse angle with each other because the oscillatory mode is destabilized to a lesser 
extent than is the non-oscillatory mode. 

The general form of the stability curves in the (& &)-plane is in general accord with 
expectations based on the well-known results for the vertical gradients case and the 
trend of the analytical results of $6. The curves are generally concave towards the 
origin, indicating less than perfect coupling between the two agencies (vertical thermal 
and solutal gradients) causing the instability. (A straight line indicates perfect 
coupling.) As S, tends to plus infinity each curve asymptotes to a line with slope - 1 
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and the instability is non-oscillatory (compare (6.4)). As S, tends to minus infinity each 
curve asymptotes to a line with slope -Li1,  for the case ( $ / A  = 1) for which 
calculations have been made, and the instability is oscillatory. More generally (see 
(6.5)) the oscillatory stability curve will have an asymptote with slope -A($LJ’. The 
effect of horizontal gradients does make one major difference. In the vertical-gradients 
case the oscillatory stability boundary bifurcates from the non-oscillatory boundary 
and the frequency CT has a cut-off at this point. In the inclined-gradients case the curves 
in the (S,,R,)-plane just cross each other (they are the projections of bifurcation 
surfaces) and we do not observe any frequency cut-off. 

Sarkar & Phillips (1992) have distinguished between ‘ double-advective’ and ‘double- 
diffusive’ instability in a porous medium. We prefer to speak of the ‘hetero-advective’ 
and ‘iso-advective’ types of double-diffusive instability. The first applies to a 
thermohaline system. Heat is advected with the Darcy (seepage) velocity u, but salt is 
advected with the intrinsic velocity, u / $ ,  because salt (and any other solute) cannot 
pass through the solid part. The consequences can be seen by comparing (2.3) with 
(2.4), or (2.9) with (2.10), and parallel equations for another solute. (Note that 
D, = $D, where D is the solutal diffusivity in a clear fluid.) The iso-advective system 
formally corresponds to the value 1 for $ / A ,  the value that we selected for our 
calculations. Changing to a more general value of $ / A  does not affect our results for 
the non-oscillatory modes, but it does affect those for the oscillatory modes, notably 
in the manner mentioned in the previous paragraph. 

When experimental results are available it will be worthwhile to extend the 
calculations to other values of the parameters. In the meantime we believe that our 
results should serve as a useful guide. 
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